skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "ERWIG, MARTIN"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Transparency in computing is an important precondition to ensure the trust of users. One concrete way of delivering transparency is to provide explanations of computing results. To this end, we introduce a method for explaining the results of various linear and hierarchical multi‐criteria decision‐making (MCDM) techniques such as the weighted sum model (WSM) and the analytic hierarchy process (AHP). The two key ideas are (A) to maintain a fine‐grained representation of the values manipulated by these techniques and (B) to derive explanations from these representations through merging, filtering, and aggregating operations. An explanation in our model presents a high‐level comparison of two alternatives in an MCDM problem, presumably an optimal and a non‐optimal one, illuminating why one alternative was preferred over the other. We show the usefulness of our techniques by generating explanations for two well‐known examples from the MCDM literature. Finally, we show their efficacy by performing computational experiments. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available March 25, 2026
  3. We introduce a representation for generating explanations for the outcomes of combinatorial optimization algorithms. The two key ideas are (A) to maintain fine-grained representations of the values manipulated by these algorithms and (B) to derive explanations from these representations through merge, filter, and aggregation operations. An explanation in our model presents essentially a high-level comparison of the solution to a problem with a hypothesized alternative, illuminating why the solution is better than the alternative. Our value representation results in explanations smaller than other dynamic program representations, such as traces. Based on a measure for the conciseness of explanations we demonstrate through a number of experiments that the explanations produced by our approach are small and scale well with problem size across a number of different applications. 
    more » « less
  4. MADMAX is a Haskell-embedded DSL for multi-attribute, multi-layered decision making. An important feature of this DSL is the ability to generate explanations of why a computed optimal solution is better than its alternatives. The functional approach and Haskell's type system support a high-level formulation of decision-making problems, which facilitates a number of innovations, including the gradual evolution and adaptation of problem representations, a more user-friendly form of sensitivity analysis based on problem domain data, and fine-grained control over explanations. 
    more » « less
  5. Abstract Gradual typing allows programs to enjoy the benefits of both static typing and dynamic typing. While it is often desirable to migrate a program from more dynamically typed to more statically typed or vice versa, gradual typing itself does not provide a way to facilitate this migration. This places the burden on programmers who have to manually add or remove type annotations. Besides the general challenge of adding type annotations to dynamically typed code, there are subtle interactions between these annotations in gradually typed code that exacerbate the situation. For example, to migrate a program to be as static as possible, in general, all possible combinations of adding or removing type annotations from parameters must be tried out and compared. In this paper, we address this problem by developing migrational typing , which efficiently types all possible ways of replacing dynamic types with fully static types for a gradually typed program. The typing result supports automatically migrating a program to be as static as possible or introducing the least number of dynamic types necessary to remove a type error. The approach can be extended to support user-defined criteria about which annotations to modify. We have implemented migrational typing and evaluated it on large programs. The results show that migrational typing scales linearly with the size of the program and takes only 2–4 times longer than plain gradual typing. 
    more » « less